Эритроцит: строение, форма и функции. Строение эритроцитов человека

Клетки крови человека. Строение клеток крови

Понятие о системе
крови

Система
крови включает в
себя кровь, органы кроветворения
— красный костный
мозг,
тимус,
селезенку, лимфатические узлы, лимфоидную
ткань некроветворных органов. Элементы
системы
крови имеют
общее происхождение
— из мезенхимы и
структурно-функциональные
особенности, подчиняются общим законам
нейрогуморальной
регуляции,
объединены
тесным взаимодействием всех
звеньев.

Так,
постоянный
состав периферической крови
поддерживается
сбалансированными
процессами
новообразования
(гемопоэза)
и разрушения
клеток крови.
Поэтому понимание вопросов развития,
строения и
функции отдельных элементов системы
возможно лишь с позиций изучения
закономерностей, характеризующих
систему в целом.

Система
крови тесно связана с лимфатической и
иммунной системами.

Эритроцит: строение, форма и функции. Строение эритроцитов человека

Образование
иммуноцитов происходит в органах
кроветворения, а их циркуляция и
рециркуляция — в периферической крови
и лимфе.

Кровь
и лимфа, являющиеся тканями мезенхимного
происхождения, образуют внутреннюю
среду организма (вместе с рыхлой
соединительной тканью). Они состоят из
плазмы (жидкого межклеточного вещества)
и взвешенных в ней форменных
элементов.
Обе ткани тесно взаимосвязаны, в них
происходит постоянный обмен форменными
элементами, а также веществами,
находящимися в плазме.

Установлен факт
рециркуляции лимфоцитов из крови в
лимфу и из лимфы в кровь. Все клетки
крови развиваются из общей полипотентной
стволовой клетки крови (СКК) в эмбриогенезе
(эмбриональный гемопоэз) и .после рождения
(постэмбриональный гемопоэз). Сущность
и этапы гемопоэза рассмотрены в
специальном разделе ниже.

Тромбоциты
представляют собой свободноциркулирующие
в крови безъядерные фрагменты цитоплазмыгигантских
клеток
красного костного
мозга — мегакариоцитов. Размер
тромбоцитов 2—3мкм,
их
количество в крови составляет 200-300х109
л. Каждая пластинка в световом микроскопе
состоит из двух частей:хромомера,
или грануломера(интенсивно
окрашенная часть),и
гиаломера
(прозрачная часть).Хромомер
находится в центретромбоцита
и содержит гранулы, остатки органелл
(митохондрии, ЭПС),
а также
включениягликогена.

Гранулы
делятся начетыре
вида.

1.
а-гранулы
содержат фибриноген, фибропектин,
ряд факторов свертывания крови, ростовые
факторы, тромбоспондин
(аналог актомиозинового комплекса,
участвует в адгезии и агрегации
тромбоцитов) и другие белки. Окрашиваются
азуром, давая базофилию грануломера.

2. Второй
тип гранул называется
плотными тельцами,
или
5-гранулами.
Они содержат
серотонин, гистамин
(по-ступающие в тромбоциты
из плазмы), АТФ, АДФ, кальцин, фосфор, АДФ
вызывает агрегацию тромбоцитов при
повреждении
стенки сосуда и кровотечении. Серотонин
стимулирует
сокращение стенки поврежденного
кровеносного сосуда, а
также
вначале активирует, а затем
ингибирует
агрегацию
тромбоцитов.

Эритроцит: строение, форма и функции. Строение эритроцитов человека

3.
λ-гранулы — типичные лизосомы. Их
ферменты выбрасываются
при
ранении
сосуда и
разрушают
остатки
неразрешенных клеток для лучшего
прикрепления тромба, а также участвуют
в растворении последнего.

4.
Микропероксисомы
содержат пероксидазу.
Их
количество
невелико.

Кроме
гранул в тромбоците есть две системы
канальцев:
1) канальцы,
связанные с поверхностью клеток.
Эти канальцы участвуют в экзоцитозе
гранул и эндоцитозе.
2) система плотных трубочек.
Образуется за
счет
деятельности комплекса Гольджи
мегакариоцита.

АГ —
аппарат Гольджи, Г — А-гранулы, Гл —
гликоген. ГМт — гранулярные микротрубочки,
КПМ — кольцо периферических микротрубочек,
ПМ — плазматическая мембрана, СМФ —
субмембранные микрофиламенты, ПТС —
плотная тубулярная система, ПТ — плотные
тельца, ЛВС — поверхностная вакуолярная
система,
ПС — примембраммый слой кислых
гликозаминогликанов. М — митохондрии
(по Уайту).

Функции тромбоцитов.

1.
Участвуют в свертывании крови
и остановке кровотечения. Активацию
тромбоцитов вызывают АДФ, выделяемая
поврежденной сосудистой
стенкой,
а также адреналин, коллаген и ряд
медиаторов гранулоцитов, эндотелиоцитов,
моноцитов, тучных клеток. В результате
адгезии и агрегации
тромбоцитов при образовании тромба на
их поверхности образуются
отростки,
которыми они слипаются друг с другом.

Образуется
белый тромб.
Далее тромбоциты выделяют факторы,
которые превращают
протромбин в тромбин,
под влиянием тромбина происходит
превращение
фибриногена в фибрин. В
результате вокруг тромбоцитарных
конгломератов
образуются нити
фибрина, составляющие основу тромба.
В нитях
фибрина задерживаются эритроциты.

Так
формируется
красный тромб.
Серотонин
тромбоцитов
стимулирует сокращение сосуда. Кроме
того,
за
счет сократимого белка
тромбостенина,
который стимулирует взаимодействие
актиновых и
миозиновых филаментов, тромбоциты
тесно
сближаются, тяга
передается
также на нити фибрина, тромб уменьшается
в размерах
и становится
непроницаемым для крови
(ретракция тромба). Все это
способствует остановке кровотечения.

2.
Тромбоциты
одновременно с образованием тромба
стимулируют
регенерацию
поврежденных тканей.

3.
Обеспечение
нормального функционирования
сосудистой стенки, в первую очередь,
сосудистого эндотелия.

В крови
есть пять видов тромбоцитов: а)
юные; б) зрелые; в) старые;
г)
дегенеративные;
д) гигантские.
Они
различаются
по
строению.
Продолжительность
жизни
тромбоцитов равна 5—10 суткам. После
этого они фагоцитируются
макрофагами (в основном в селезенке
и легких). В
крови в норме циркулирует 2/3 всех
тромбоцитов, остальные депонированы в
красной
пульпе
селезенки. В норме некоторое
количество тромбоцитов может выходить
в ткани
(тканевые тромбоциты).

Нарушение
функции тромбоцитов может проявляться
как в гипокоагуляции, так и в гиперкоагуляции
крови. В нервом случае
это
ведет к повышенной кровоточивости и
наблюдается при
тромбоцитопении и тромбоцитопатии.
Гиперкоагуляция проявляется
тромбозами — закрытием
просвета
сосудов
в органах
тромбами, что приводит к некрозу
и гибели части
органа.

Эритроциты — высокоспециализированные клетки, функцией которых является перенос кислорода из лёгких к тканям тела и транспорт диоксида углерода (CO2) в обратном направлении. У позвоночных, кроме млекопитающих, эритроциты имеют ядро, у эритроцитов млекопитающих ядро отсутствует.

Наиболее специализированы эритроциты млекопитающих, лишённые в зрелом состоянии ядра и органелл и имеющие форму двояковогнутого диска, обусловливающую высокое отношение площади к объёму, что облегчает газообмен. Особенности цитоскелета и клеточной мембраны позволяют эритроцитам претерпевать значительные деформации и восстанавливать форму (эритроциты человека диаметром 8 мкм проходят через капилляры диаметром 2 – 3 мкм).

Hb O2⇌{displaystyle rightleftharpoons } HbO2

Особенностью связывания кислорода гемоглобином является его аллостерическое регулирование — стабильность оксигемоглобина падает в присутствии 2,3-дифосфоглицериновой кислоты — промежуточного продукта гликолиза и, в меньшей степени, углекислого газа, что способствует высвобождению кислорода в тканях, в нём нуждающихся.

H2O CO2⇌{displaystyle rightleftharpoons } H HCO3

В результате в цитоплазме накапливаются ионы водорода, однако снижение pH при этом незначительно из-за высокой буферной ёмкости гемоглобина. Вследствие накопления в цитоплазме ионов бикарбоната возникает градиент концентрации, однако ионы бикарбоната могут покидать клетку только при условии сохранения равновесного распределения зарядов между внутренней и внешней средой, разделённых цитоплазматической мембраной, то есть выход из эритроцита иона бикарбоната должен сопровождаться либо выходом катиона, либо входом аниона.

При переливании крови от донора к реципиенту возможна агглютинация (склеивание) эритроцитов, а также гемолиз (их разрушение). Чтобы этого не происходило, необходимо учитывать группы крови, открытые Карлом Ландштейнером в 1900 году. Агглютинацию вызывают белки, находящиеся на поверхности эритроцита, — антигены (агглютиногены) и находящиеся в плазме антитела (агглютинины).

I — 0 II — A III — B IV — AB
αβ β α

Клетки крови

Строение кровяных телец зависит от функций, которые возложены на них. Оно описывается с трех ракурсов:

  1. Особенности внешнего строения.
  2. Компонентный состав эритроцита.
  3. Внутренняя морфология.

Внешне, в профиль, эритроцит выглядит как двояковогнутый диск, а в анфас — как круглая клетка. Диаметр в норме 6,2-8,2 мкм.

Чаще в сыворотке крови присутствуют клетки с небольшими различиями в размерах. При недостатке железа разбег уменьшается, и в мазке крови распознается анизоцитоз (много клеток с разными размерами и диаметром). При дефиците фолиевой кислоты или витамина В12 эритроцит увеличивается до мегалобласта. Его размер составляет примерно 10-12 мкм. Объем нормальной клетки (нормоцита) 76-110 куб. мкм.

Строение эритроцитов в крови — это не единственная особенность данных клеток. Куда важнее их количество. Маленькие размеры позволили увеличить их число и, следовательно, площадь контактной поверхности. Кислород активнее захватывается эритроцитами человека, нежели лягушки. И наиболее легко он в тканях отдается из человеческих эритроцитов.

  • Микроцитоз – средний размер красных кровяных клеток меньше нормального;
  • Макроцитоз – средний размер красных кровяных клеток больше нормального;
  • Нормоцитоз – средний размер красных кровяных клеток нормальный;
  • Анизоцитоз – размеры красных кровяных клеток значительно отличаются, одни чересчур маленькие, другие очень большие;
  • Пойкилоцитоз – форма клеток варьирует от правильной до овальной, серповидной;
  • Нормохромия – красные кровяные тельца окрашены нормально, что является признаком нормального уровня в них гемоглобина;
  • Гипохромия – красные кровяные клетки окрашены слабо, что указывает на то, что гемоглобина в них меньше нормы.
  • У женщин — от 3.7 до 4.7 триллионов в 1 л;
  • У мужчин — от 4 до 5.1 триллионов в 1 л;
  • У детей старше 13 лет — от 3.6 до 5.1 триллионов в 1 л;
  • У детей в возрасте от 1 года до 12 лет — от 3.5 до 4.7 триллионов в 1 л;
  • У детей в 1 год — от 3.6 до 4.9 триллионов в 1 л;
  • У детей в полгода — от 3.5 до 4.8 триллионов в 1 л;
  • У детей в 1 месяц — от 3.8 до 5.6 триллионов в 1 л;
  • У детей в первый день их жизни — от 4.3 до 7.6 триллионов в 1 л.
  • Поликистоз почек (заболевание, при котором в обеих почках появляются и постепенно увеличиваются кисты);
  • ХОБЛ (хронические обструктивные болезни легких – бронхиальная астма, эмфизема легких, хронические бронхиты);
  • Синдром Пиквика (ожирение, сопровождающееся легочной недостаточностью и артериальной гипертензией, т.е. стойким повышением артериального давления);
  • Гидронефроз (стойкое прогрессирующее расширение почечной лоханки и чашечек на фоне нарушения оттока мочи);
  • Курс терапии стероидами;
  • Врожденные либо приобретенные пороки сердца;
  • Пребывание в высокогорных районах;
  • Стеноз (сужение) почечных артерий;
  • Злокачественные новообразования;
  • Синдром Кушинга (совокупность симптомов, которые возникают при чрезмерном увеличении количества стероидных гормонов надпочечников, в частности кортизола);
  • Длительное голодание;
  • Чрезмерные физические нагрузки.

Лейкоциты

Лейкоциты – это белые клетки крови, основная задача которых – защищать организм от внутренних и внешних врагов.

Их принято делить на гранулоциты и агранулоциты. Первая группа – это зернистые клетки: нейтрофилы, базофилы, эозинофилы. Вторая группа не имеет гранул в цитоплазме, к ней относятся лимфоциты и моноциты.

Нейтрофилы

Это самая многочисленная группа лейкоцитов – до 70 % от общего числа белых клеток. Свое название нейтрофилы получили в связи с тем, что их гранулы окрашиваются красителями с нейтральной реакцией. Зернистость у него мелкая, гранулы имеют фиолетово-коричневатый оттенок.

Основная задача нейтрофилов – это фагоцитоз, который заключается в захвате болезнетворных микробов и продуктов распада тканей и уничтожении их внутри клетки с помощью лизосомных ферментов, находящихся в гранулах. Эти гранулоциты борются в основном с бактериями и грибами и в меньшей степени с вирусами.

Нейтрофил – это ядерная клетка округлой формы, достигающая в диаметре 10 мкм. Ядро может иметь вид палочки или состоять из нескольких сегментов (от трех до пяти), соединенных тяжами. Увеличение количества сегментов (до 8-12 и более) говорит о патологии. Таким образом, нейтрофилы могут быть палочкоядерными или сегментоядерными.

В цитоплазме находится порядка 250 разновидностей гранул, содержащих вещества, благодаря которым нейтрофил выполняет свои функции. Это молекулы белка, влияющие на обменные процессы (ферменты), регуляторные молекулы, контролирующие работу нейтрофилов, вещества, разрушающие бактерии и другие вредные агенты.

Образуются эти гранулоциты в костном мозге из нейтрофильных миелобластов. Зрелая клетка находится в мозге 5 дней, затем поступает в кровь и живет здесь до 10 часов. Из сосудистого русла нейтрофилы попадают в ткани, где находятся двое-трое суток, далее они попадают в печень и селезенку, где разрушаются.

Базофилы

Этих клеток в крови очень мало – не более 1 % от всего количества лейкоцитов. Они имеют округлую форму и сегментированное или палочкообразное ядро. Их диаметр достигает 7-11 мкм. Внутри цитоплазмы темно-фиолетовые гранулы разной величины. Название получили в связи с тем, что их гранулы окрашиваются красителями со щелочной, или основной (basic), реакцией. Гранулы базофила содержат ферменты и другие вещества, принимающие участие в развитии воспаления.

Их основная функция – выделение гистамина и гепарина и участие в формировании воспалительных и аллергических реакций, в том числе немедленного типа (анафилактический шок). Кроме этого, они способны уменьшить свертываемость крови.

Образуются в костном мозге из базофильных миелобластов. После созревания они попадают в кровь, где находятся около двух суток, затем уходят в ткани. Что происходит дальше до сих пор неизвестно.

Эозинофилы

Эти гранулоциты составляют примерно 2-5 % от общего числа белых клеток. Их гранулы окрашиваются кислым красителем – эозином.

У них округлая форма и слабо окрашенное ядро, состоящее из сегментов одинаковой величины (обычно двух, реже – трех). В диаметре эозинофилы достигаютмкм. Их цитоплазма окрашивается в бледно-голубой цвет и почти незаметна среди большого количества крупных круглых гранул желто-красного цвета.

Эритроцит: строение, форма и функции. Строение эритроцитов человека

Образуются эти клетки в костном мозге, их предшественники – эозинофильные миелобласты. В их гранулах содержатся ферменты, белки и фосфолипиды. Созревший эозинофил живет в костном мозге несколько дней, после попадания в кровь находится в ней до 8 часов, затем перемещается в ткани, имеющие контакт с внешней средой (слизистые оболочки).

Функция у эозинофила, как и у всех лейкоцитов, защитная. Эта клетка способна к фагоцитозу, хотя он и не является их главной обязанностью. Они захватывают болезнетворных микробов преимущественно на слизистых оболочках. В гранулах и ядре эозинофилов содержатся токсичные вещества, повреждающие мембрану паразитов. Их основная задача – защита от паразитарных инфекций. Кроме этого, эозинофилы принимает участие в формировании аллергических реакций.

Лимфоциты

Это круглые клетки с большим ядром, занимающим большую часть цитоплазмы. Их диаметр составляет 7 до 10 мкм. Ядро бывает круглым, овальным или бобовидным, имеет грубую структуру. Состоит их комков оксихроматина и базироматина, напоминающих глыбы. Ядро может быть темно-фиолетовым или светло-фиолетовым, иногда в нем присутствуют светлые вкрапления в виде ядрышек.

В крови циркулируют два вида зрелых лимфоцитов:

  • Узкоплазменные. У них грубое темно-фиолетовое ядро и цитоплазма в виде узкого ободка синего цвета.
  • Широкоплазменные. В этом случае ядро имеет более бледную окраску и бобовидную форму. Ободок цитоплазмы достаточно широкий, серо-синего цвета, с редкими аузурофильными гранулами.

Из атипичных лимфоцитов в крови можно обнаружить:

  • Мелкие клетки с едва просматривающейся цитоплазмой и пикнотическим ядром.
  • Клетки с вакуолями в цитоплазме или ядре.
  • Клетки с дольчатыми, почкообразными, имеющими зазубрины ядрами.
  • Голые ядра.

Образуются лимфоциты в костном мозге из лимфобластов и в процессе созревания проходят несколько этапов деления. Полное его созревание происходит в тимусе, лимфатических узлах и селезенке. Лимфоциты – это иммунные клетки, обеспечивающие иммунные реакции. Различают T-лимфоциты (80 % от общего числа) и B-лимфоциты (20 %).

Действия T-лимфоцитов и B-лимфоцитов различные, хотя и те, и другие принимают участие в формировании иммунных реакций.

Первые занимаются уничтожением вредных агентов, как правило, вирусов, путем фагоцитоза. Иммунные реакции, в которых они участвуют, являются неспецифической резистентностью, поскольку действия T-лимфоцитов одинаковы для всех вредных агентов.

По выполняемым действиям T-лимфоциты делятся на три вида:

  • T-хелперы. Их главная задача – помогать B-лимфоцитам, но в некоторых случаях они могут выполнять роль киллеров.
  • T-киллеры. Уничтожают вредных агентов: чужеродные, раковые и мутированные клетки, возбудителей инфекций.
  • T-супрессоры. Угнетают или блокируют слишком активные реакции B-лимфоцитов.

Erythrocyte.png

B-лимфоциты действуют иначе: против болезнетворных микроорганизмов они вырабатывают антитела – иммуноглобулины. Происходит это следующим образом: в ответ на действия вредных агентов они вступают во взаимодействие с моноцитами и T-лимфоцитами и превращаются в плазматические клетки, продуцирующие антитела, которые распознают соответствующие антигены и связывают их.

Эти клетки обеспечивают устойчивость организма к тем или иным вредным микроорганизмам, что принято называть иммунитетом. То есть, встретившись с вредоносным агентом, B-лимфоциты создают клетки памяти, которые эту устойчивость и формируют. Того же самого – формирования клеток памяти – добиваются прививками против инфекционных болезней.

Моноциты

Моноциты – самые крупные из лейкоцитов. Их количество составляет от 2 до 9 % от всех белых кровяных клеток. Их диаметр доходит до 20 мкм. Ядро моноцита крупное, занимает почти всю цитоплазму, может быть круглым, бобовидным, иметь форму гриба, бабочки. При окрашивании становится красно-фиолетовым. Цитоплазма дымчатая, синевато-дымчатая, реже синяя. Обычно она имеет азурофильную мелкую зернистость. В ней могут находиться вакуоли (пустоты), пигментные зерна, фагоцитированные клетки.

Моноциты производятся в костном мозге из монобластов. После созревания сразу оказываются в крови и находятся там до 4 суток. Часть этих лейкоцитов погибает, часть перемещается в ткани, где дозревают и превращаются в макрофагов. Это самые крупные клетки с большим круглым или овальным ядром, голубой цитоплазмой и большим числом вакуолей, из-за чего кажутся пенистыми.

Моноциты образуют регуляторные молекулы и ферменты. Они способны формировать воспалительную реакцию, но также могут и тормозить ее. Кроме этого, они участвуют в процессе заживления ран, помогая ускорить его, способствуют восстановлению нервных волокон и костной ткани. Главная их функция – фагоцитоз.

Commons-logo.svg

Размеры данных структур достаточно значительны по сравнению с эритроцитами и тромбоцитами. Достигают 23 мкм в диаметре и живут всего несколько часов (до 36). Функции их варьируются в зависимости от разновидности.

Белые клетки крови обитают не только в ней. На самом деле они только используют жидкость для того, чтобы добраться до необходимого пункта назначения и выполнить свои функции. Лейкоциты есть во многих органах и тканях. Поэтому конкретно в крови их количество невелико.

Лейкоциты – это белые клетки крови, основная задача которых – защищать организм от внутренних и внешних врагов.

Базофилы

Формирование эритроцитов

Формирование эритроцитов (эритропоэз) происходит в костном мозгечерепа, рёбер и позвоночника, а у детей — ещё и в костном мозге в окончаниях длинных костей рук и ног. Продолжительность жизни эритроцита — 3 – 4 месяца, разрушение (гемолиз) происходит в печени и селезёнке. Прежде чем выйти в кровь, эритроциты последовательно проходят несколько стадий пролиферации и дифференцировки в составе эритрона — красного ростка кроветворения.

Полипотентная стволовая клетка крови (СКК) даёт клетку-предшественницу миелопоэза (КОЕ-ГЭММ), которая в случае эритропоэза даёт клетку-родоначальницу миелопоэза (БОЕ-Э), которая уже даёт унипотентную клетку, чувствительную к эритропоэтину (КОЕ-Э).

Колониеобразующая единица эритроцитов (КОЕ-Э) даёт начало эритробласту, который через образование пронормобластов уже дают морфологически различимые клетки-потомки нормобласты (последовательно переходящие стадии):

  • Эритробласт. Отличительные признаки его таковы: диаметр 20 – 25 мкм, крупное (более 2/3 всей клетки) ядро с 1 – 4 чётко оформленными ядрышками, ярко-базофильнаяцитоплазма с фиолетовым оттенком. Вокруг ядра имеется просветление цитоплазмы (т. н. «перинуклеарное просветление»), а на периферии могут формироваться выпячивания цитоплазмы (т. н. «ушки»). Последние 2 признака хотя и являются характерными для эритробластов, но не наблюдаются у них всех.
  • Пронормоцит. Отличительные признаки: диаметр 10 – 20 мкм, ядро лишается ядрышек, хроматин грубеет. Цитоплазма начинает светлеть, перинуклеарное просветление увеличивается в размере.
  • Базофильныйнормоцит. Отличительные признаки: диаметр 10 – 18 мкм, лишённое нуклеол ядро. Хроматин начинает сегментироваться, что приводит к неравномерному восприятию красителей, формированию зон окси- и базохроматина (т. н. «колесовидное ядро»).
  • Полихроматофильный нормоцит. Отличительные признаки: диаметр 9 – 12 мкм, в ядре начинаются пикнотические (деструктивные) изменения, однако колесовидность сохраняется. Цитоплазма приобретает оксифильность вследствие высокой концентрации гемоглобина.
  • Оксифильный нормоцит. Отличительные признаки: диаметр 7 – 10 мкм, ядро подвержено пикнозу и смещено на периферию клетки. Цитоплазма явно розовая, вблизи ядра в ней обнаруживаются осколки хроматина (тельца Жоли).
  • Ретикулоцит. Отличительные признаки: диаметр 9 – 11 мкм, при суправитальной окраске имеет жёлто-зелёную цитоплазму и сине-фиолетовый ретикулум. При покраске по Романовскому-Гимзе никаких отличительных признаков по сравнению со зрелым эритроцитом не выявляется. При исследовании полноценности, скорости и адекватности эритропоэза проводится специальный анализ количества ретикулоцитов.
  • Нормоцит. Зрелый эритроцит, с диаметром 7 – 8 мкм, не имеющий ядра и ДНК (в центре — просветление), цитоплазма — розово-красная.

Гемоглобин начинает накапливаться уже на этапе КОЕ-Э, однако его концентрация становится достаточно высокой для изменения цвета клетки лишь на уровне полихроматофильного нормоцита. Так же происходит и угасание (а впоследствии и разрушение) ядра — с КОЕ, но вытесняется оно лишь на поздних стадиях. Не последнюю роль в этом процессе у человека играет гемоглобин (основной его тип — Hb-A), который в высокой концентрации токсичен для самой клетки.

У птиц, пресмыкающихся, земноводных и рыб ядро просто теряет активность, но сохраняет способность к реактивации. Одновременно с исчезновением ядра по мере взросления эритроцита из его цитоплазмы исчезают рибосомы и другие компоненты, участвующие в синтезе белка. Ретикулоциты попадают в кровеносную систему и через несколько часов становятся полноценными эритроцитами.

Гемопоэз (в данном случае эритропоэз) исследуется по методу селезёночных колоний, разработанному Э. Маккаллохом[en] и Дж. Тиллом[en].

Тромбоциты

Эритроцит: строение, форма и функции. Строение эритроцитов человека

Эти клетки крови представляют собой маленькие безъядерные пластинки и могут иметь круглую или овальную форму. Во время активации, когда они находятся у поврежденной стенки сосуда, у них образуются выросты, поэтому они выглядят как звезды. В тромбоцитах есть микротрубочки, митохондрии, рибосомы, специфические гранулы, содержащие вещества, необходимые для свертывания крови. Эти клетки снабжены трехслойной мембраной.

Производятся тромбоциты в костном мозге, но совершенно другим путем, чем остальные клетки. Кровяные пластинки образуются из самых крупных клеток мозга – мегакариоцитов, которые, в свою очередь, образовались из мегакариобластов. У мегакариоцитов очень большая цитоплазма. В ней после созревания клетки появляются мембраны, разделяющие ее на фрагменты, которые начинают отделяться, и таким образом появляются тромбоциты. Они выходят из костного мозга в кровь, находятся в ней 8-10 дней, затем погибают в селезенке, легких, печени.

Кровяные пластинки могут иметь разные размеры:

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Тромбоциты выполняют очень важную функцию – они участвуют в формировании кровяного сгустка, который закрывает повреждение в сосуде, тем самым не давая крови вытекать. Кроме этого, они поддерживают целостность стенки сосуда, способствуют быстрейшему ее восстановлению после повреждения. Когда начинается кровотечение, тромбоциты прилипают к краю повреждения, пока отверстие не будет полностью закрыто.

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Еще одни важные клетки крови человека — тромбоциты. Это плоские структуры, размеры которых в 10 раз меньше, чем эритроцитов. Такие мелкие объемы позволяют им быстро скапливаться и слипаться между собой для выполнения своего прямого назначения.

В составе организма этих стражей порядка насчитывается около 1,5 триллиона штук, количество постоянно пополняется и обновляется, так как срок жизни их, увы, очень мал — всего около 9 дней. Почему стражи порядка? Это связано с функцией, которую они выполняют.

Структура и состав

Что же представляет собой эритроцит? Строение его представляет не меньший интерес, нежели функции. Эта клетка похожа на мешочек с гемоглобином, ограниченный мембраной, на которой экспрессированы рецепторы: кластеры дифференцировки и разнообразные группы крови (по Ландштейнеру, по резусу, по Даффи и другим). Но внутри клетка особенная и очень отличается от других клеток организма.

Отличия таковы: эритроциты у женщин и мужчин не содержат ядра, у них нет рибосом и эндоплазматической сети. Все эти органеллы были удалены после наполнения цитоплазмы клетки гемоглобином. Затем органеллы оказались ненужными, ведь для проталкивания по капиллярам требовалась клетка с минимальными размерами.

Потому внутри она содержит только гемоглобин и некоторые вспомогательные белки. Их роль пока не выяснена. Зато из-за отсутствия эндоплазматической сети, рибосом и ядра она стала легкой и компактной, а главное, может легко деформироваться вместе с текучей мембраной. И это самые важные особенности строения эритроцитов.

Размеры и форма эритроцитов широко варьируют среди позвоночных. Лишенные ядра эритроциты млекопитающих имеют наименьшие размеры. Почти столь же малы имеющие ядро эритроциты птиц. У остальных групп позвоночных они заметно крупнее.

Размеры и форма эритроцитов широко варьируют среди позвоночных. Лишенные ядра эритроциты млекопитающих имеют наименьшие размеры. Почти столь же малы имеющие ядро эритроциты птиц. У остальных групп позвоночных они заметно крупнее.

Зрелые эритроциты птиц имеют ядро, однако в крови взрослых самок папуанского пингвина с очень низкой частотой встречаются и безъядерные красные кровяные тельца (B).

Зрелые эритроциты птиц имеют ядро, однако в крови взрослых самок

папуанского пингвина

с очень низкой частотой встречаются и безъядерные красные кровяные тельца

(B)

.

У большинства групп позвоночных эритроциты имеют ядро и другие органоиды.

У млекопитающих зрелые эритроциты лишены ядер, внутренних мембран и большинства органоидов. Ядра выбрасываются из клеток-предшественников в ходе эритропоэза. Обычно эритроциты млекопитающих имеют форму двояковогнутого диска и содержат в основном дыхательный пигмент гемоглобин. У некоторых животных (например, верблюдов) эритроциты имеют овальную форму.

Содержимое эритроцита представлено главным образом дыхательным пигментомгемоглобином, обусловливающим красный цвет крови. Однако на ранних стадиях количество гемоглобина в них мало, и на стадии эритробластов цвет клетки синий; позже клетка становится серой и, лишь полностью созрев, приобретает красную окраску.

Эритроциты (красные кровяные тельца) человека

Эритроциты (красные кровяные тельца) человека

Важную роль в эритроците выполняет клеточная (плазматическая) мембрана, пропускающая газы (кислород, углекислый газ), ионы (Na, K) и воду. Мембрану пронизывают трансмембранные белки — гликофорины, которые благодаря большому количеству остатков N-ацетилнейраминовой (сиаловой) кислоты ответственны примерно за 60 % отрицательного заряда на поверхности эритроцитов.

На поверхности липопротеидной мембраны находятся специфические антигены гликопротеиновой природы — агглютиногены — факторы систем групп крови (на данный момент изучено более 15 систем групп крови: AB0, резус-фактор, антиген Даффи (англ.)русск., антиген Келл, антиген Кидд (англ.)русск.), обусловливающие агглютинацию эритроцитов при действии специфических агглютининов.

Эффективность функционирования гемоглобина зависит от величины поверхности соприкосновения эритроцита со средой. Суммарная поверхность всех эритроцитов крови в организме тем больше, чем меньше их размеры. У низших позвоночных эритроциты крупные (например, у хвостатого земноводного амфиумы – 70 мкм в диаметре), эритроциты высших позвоночных мельче (например, у козы — 4 мкм в диаметре). У человека диаметр эритроцита составляет 6,2 – 8,2 мкм[5], толщина – 2 мкм, объём — 76 – 110 мкм³[6].

Содержание эритроцитов в крови:[источник не указан 1140 дней]

  • у мужчин — 3,9 – 5,5⋅1012 на литр (3,9 – 5,5 млн в 1 мм³),
  • у женщин — 3,9 – 4,7⋅1012 на литр (3,9 – 4,7 млн в 1 мм³),
  • у новорождённых — до 6,0⋅1012 на литр (до 6 млн в 1 мм³),
  • у пожилых людей — 4,0⋅1012 на литр (менее 4 млн в 1 мм³).

По своей природе кровь является разновидностью соединительной ткани, состоящей из жидкой части — плазмы и форменных элементов клеток. Их процентное соотношение примерно 60/40. Всего в крови насчитывается около 400 различных соединений, как гормональной природы, так и витаминов, белков, антител и микроэлементов.

Объем данной жидкости в организме взрослого человека составляет около 5,5-6 литров. Потеря 2-2,5 из них смертельно опасна. Почему? Потому что кровь выполняет ряд жизненно необходимых функций.

  1. Обеспечивает гомеостаз организма (постоянство внутренней среды, в том числе и температуры тела).
  2. Работа клеток крови и плазмы приводит к распространению по всем клеткам важных биологически активных соединений: белков, гормонов, антител, питательных веществ, газов, витаминов, а также продуктов обмена.
  3. Благодаря постоянству состава крови поддерживается определенный уровень кислотности (рН не должна превышать значение 7,4).
  4. Именно данная ткань заботится о выведении из организма лишних, вредных соединений через выделительную систему и потовые железы.
  5. Жидкие растворы электролитов (солей) выходят с мочой, что обеспечивается исключительно работой крови и органов выделения.

Переоценить значение, которое имеют клетки крови человека, сложно. Рассмотрим более подробно строение каждого структурного элемента этой важной и уникальной биологической жидкости.

Эритроцитов в нормальной крови также варьируют. Большинство эритроцитов (75 %) имеют диаметр около 7,5 мкм и называются нормоцитами. Остальная часть эритроцитов представлена микроцитами (

12,5 %) и макроцитами (

12,5 %). Микроциты имеют диаметр {amp}lt; 7,5 мкм, а макроциты {amp}gt;7,5 мкм. Изменение размеров эритроцитов встречается при заболеваниях крови и называется анизоцитозом.

Форма и строение.

Популяция эритроцитов неоднородна по форме и размерам. В нормальной крови человека основную массу (80—90 %) составляют эритроциты двояковогнутой формы — дискоциты. Кроме того, имеются планоциты (с плоской поверхностью) и стареющие формы эритроцитов — шиловидные эритроциты, или эхиноциты (

6 %), куполообразные, или стоматоциты (

1—3 %), и шаровидные, или сфероциты (

1 %) (рис). Процесс старения эритроцитов идет двумя путями — кренированием (образование зубцов на плазмолемме) или путем инвагинации участков плазмолеммы. При кренировании образуются эхиноциты с различной степенью формирования выростов плазмолеммы, впоследствии отпадающих, при этом формируется эритроцит в виде микросфероцита.

При заболеваниях могут появляться аномальные формы эритроцитов, что чаще всего обусловлено изменением структуры гемоглобина (НЬ). Замена даже одной аминокислоты в молекуле НЬ может быть причиной изменения формы эритроцитов. В качестве примера можно привести появления эритроцитов серповидной формы при серповидно-клеточной анемии, когда у больного имеет место генетическое повреждение в р-цепи гемоглобина. Процесс нарушения формы эритроцитов при заболеваниях получил название пойкилоцитоз.

Рис. Эритроциты различной формы в сканирующем электронном микроскопе (по Г.Н.Никитиной).

1 — дискоциты-нормоциты; 2 — дискоцит-макроцит; 3,4 — эхиноциты; 5 — стоматоцит; 6 — сфероцит.

Плазмолемма. Плазмолемма эритроцита состоит из бислоя липидов и белков, представленных приблизительно в равных количествах, а также небольшого количества углеводов, формирующих гликокаликс. Большинство липидных молекул, содержащих холин (фосфатидилхолин, сфин-гомиелин), расположены во внешнем слое плазмолеммы, а липиды, несущие на конце аминогруппу (фосфатидилсерин, фосфатидилэтаноламин), лежат во внутреннем слое. Часть липидов (

Цитоплазма эритроцита состоит из воды (60 %) и сухого остатка (40 %), содержащего около 95 % гемоглобина и 5 % других веществ. Наличие гемоглобина обусловливает желтую окраску отдельных эритроцитов свежей крови, а совокупность эритроцитов — красный цвет крови. При окрашивании мазка крови азур П-эозином по Романовскому —Гимзе большинство эритроцитов приобретают оранжево-розовый цвет (оксифильны), что обусловлено высоким содержанием в них гемоглобина.

Рис. Строение плазмолеммы и цитоскелета эритроцита.

А — схема: 1 — плазмолемма; 2 — белок полосы 3; 3 — гликофорин; 4 — спектрин (α- и β-цепи); 5 — анкирин; 6 — белок полосы 4.1; 7 — узловой комплекс, 8 — актин;

Б — плазмолемма и цитоскелет эритроцита в сканирующем электронном микроскопе, 1 — плазмолемма;

2 — сеть спектрина,

Продолжительность жизни и старение эритроцитов. Средняя продолжительность жизни эритроцитов составляет около 120 дней. В организме ежедневно разрушается около 200 млн эритроцитов. При их старении происходят изменения в плазмолемме эритроцита: в частности, в гликокаликсе снижается содержание сиаловых кислот, определяющих отрицательный заряд оболочки.

Отмечаются изменения цитоскелетного белка спектрина, что приводит к преобразованию дисковидной формы эритроцита в сферическую. В плазмолемме появляются специфические рецепторы к аутологичным антителам, которые при взаимодействии с этими антителами образуют комплексы, обеспечивающие «узнавание» их макрофагами и последующий фагоцитоз.

В стареющих эритроцитах снижаются интенсивность гликолиза и соответственно содержание АТФ. Вследствие нарушения проницаемости плазмолеммы снижается осмотическая резистентность, наблюдаются выход из эритроцитов ионов К^ в плазму и увеличение в них содержания Nа . При старении эритроцитов отмечается нарушение их газообменной функции.

1. Дыхательная — перенос кислорода в ткани и углекислого газа от тканей в легкие.

2. Регуляторная и защитная функции — перенос на поверхности различных биологически активных, токсических веществ, защитных факторов: аминокислот, токсинов, антигенов, антител и др. На поверхности эритроцитов часто может происходить реакция антиген-антитело, поэтому они пассивно участвуют в защитных реакциях.

На самом деле двояковогнутая форма во многом зависит от наличия определенных веществ в клеточной мембране и показателя коллоидного содержимого. Такие составляющие обеспечивают пластичность и эластичность, а ведь именно от этих характеристик зависит, насколько легко эритроциты человека будут двигаться в кровеносной системе, особенно проходя через узкие капилляры.

Заключение

Клетки крови имеют сложное строение, и каждый вид выполняет определенную работу: от транспортировки газов и веществ до выработки антител против чужеродных микроорганизмов. Их свойства и функции на сегодняшний день изучены не до конца. Для нормальной жизнедеятельности человека необходимо определенное количество каждого вида клеток.

Клетки крови имеют сложное строение, и каждый вид выполняет определенную работу: от транспортировки газов и веществ до выработки антител против чужеродных микроорганизмов. Их свойства и функции на сегодняшний день изучены не до конца. Для нормальной жизнедеятельности человека необходимо определенное количество каждого вида клеток.

Роль в организме

Общее значение всех разновидностей белых телец — обеспечить защиту от чужеродных частиц, микроорганизмов и молекул.

Конкретные функции выполняет каждый тип лейкоцитов. Так, например:

  • нейтрофилы и моноциты пожирают все чужеродные тела в процессе фагоцитоза;
  • эозинофилы и базофилы принимают участие в формировании аллергических реакций организма, уничтожают яйца паразитических червей;
  • лимфоциты (Т-структуры, В-виды и клетки-киллеры), а также фагоциты уничтожают серьезные вирусы, убивают возбудителей тяжелых инфекций и бактерий, способных навредить; также борются с раковыми опухолями (эти клетки крови являются важными частями иммунитета, поэтому локализуются в селезенке, лимфатических сосудах и узлах).

Это основные функции, которые выполняют лейкоциты в организме человека.

Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 см/мин, что даёт им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках.

Количество эритроцитов в крови в норме поддерживается на постоянном уровне. У человека в 1 мм³ крови содержится 4,5—5 млн эритроцитов, у некоторых копытных — значительно больше (у лам — 15,4 млн, у коз — 13 млн), у пресмыкающихся — от 500 тыс. до 1,65 млн, у хрящевых рыб — 90 – 130 тыс. Общее число эритроцитов снижается при анемиях, повышается при истинной полицитемии.

Средняя продолжительность жизни эритроцита человека — 125 суток (ежесекундно образуется около 2,5 млн эритроцитов и такое же их количество разрушается), у собак — 107 дней, у домашних кроликов и кошек — 68.

Патология

Эритроциты человека:  нормальные — двояковогнутые; нормальные, вид с ребра; в гипотоническом растворе, разбухшие (сфероциты); в гипертоническом растворе, съёжившиеся (эхиноциты)

Эритроциты человека:

  1. нормальные — двояковогнутые;
  2. нормальные, вид с ребра;
  3. в гипотоническом растворе, разбухшие (сфероциты);
  4. в гипертоническом растворе, съёжившиеся (эхиноциты)

При различных заболеваниях крови возможно изменение цвета эритроцитов, их размеров, количества, а также формы; они могут принимать, например, серповидную, овальную, сферическую или мишеневидную форму.

Изменение формы эритроцитов называется пойкилоцитозом[en]. Сфероцитоз (сферическая форма эритроцитов) наблюдается при некоторых формах наследственной анемии. Эллиптоциты (эритроциты овальной формы) встречаются при мегалобластной и железодефицитной анемии, талассемиях и других заболеваниях. Акантоциты и эхиноциты (эритроциты шиповатой формы) встречаются при поражениях печени, наследственных дефектах пируваткиназы и др.

Эритроцит: строение, форма и функции. Строение эритроцитов человека

Мишеневидные эритроциты (кодоциты) — это клетки с бледной тонкой периферией и центральным утолщением, содержащем скопление гемоглобина. Встречаются при талассемиях и других гемоглобинопатиях, интоксикации свинцом и др. Серповидные эритроциты — признак серповидноклеточной анемии. Встречаются и другие формы эритроцитов[7].

При изменении кислотно-щелочного баланса крови в сторону закисления (от 7,43 до 7,33) происходит склеивание эритроцитов в виде монетных столбиков, либо их агрегация.

https://www.youtube.com/watch?v=QSysLGBmrMo

Среднее содержание гемоглобина для мужчин — 13,3 – 18 г% (или 4,0 – 5,0·1012 единиц), для женщин — 11,7 – 15,8 г% (или 3,9 – 4,7·1012 единиц). Единица измерения уровня гемоглобина представляет собой процент содержания гемоглобина в 1 грамме эритроцитарной массы.

Примечания

  1. Вестхайде В., Ригер Р. (ред.) Зоология беспозвоночных (в двух томах). Том 1: от простейших до моллюсков и артропод. М., КМК, 2008
  2. Ansell, A. D.; N. Balakrishnan Nair.Occurrence of Haemocoelic Erythrocytes containing Haemoglobin in a Wood Boring Mollusc (англ.) // Nature : journal. — 1968. — Vol. 217, no. 5126. — P. 357—357. — DOI:10.1038/217357a0.
  3. Erich Sackmann. Biological Membranes Architecture and Function: Handbook of Biological Physics / ed. R. Lipowsky and E. Sackmann. — Elsevier, 1995. — Т. 1.
  4. Pierigè F., Serafini S., Rossi L., Magnani M. Cell-based drug delivery (англ.) // Advanced Drug Delivery Reviews (англ.) : journal. — 2008. — January (vol. 60, no. 2). — P. 286—295. — DOI:10.1016/j.addr.2007.08.029. — PMID 17997501.
  5. Mary Louise Turgeon.Clinical Hematology: Theory and Procedures. — Lippincott Williams {amp}amp; Wilkins, 2004. — P. 100.
  6. McLaren C. E., Brittenham G. M., Hasselblad V. Statistical and graphical evaluation of erythrocyte volume distributions (англ.) // American Physiological Society (англ.) : journal. — 1987. — April (vol. 252, no. 4 Pt 2). — P. H857—66. — PMID 3565597.
  7. Пойкилоцитоз

Литература

  • Афансьев Ю. И. Гистология, цитология и эмбриология / Е. А. Шубикова. — 5-е издание. — Москва: «Медицина», 2002. — 744 с. — ISBN 5-225-04523-5.
  • Глушен С. В. Цитология и гистология. Курс лекций. — Минск, 2003.

Ссылки

Эта страница в последний раз была отредактирована 14 июля 2019 в 22:18.

Понравилась статья? Поделиться с друзьями:
Анализы и лечение. Помощь людям
Adblock
detector